U.S. flag

An official website of the United States government, Department of Justice.

Identification of polymers and organic gunshot residue in evidence from 3D-printed firearms using DART-mass spectrometry: A feasibility study

NCJ Number
304138
Journal
Forensic Chemistry Volume: 5 Dated: 2017 Pages: 26-32
Author(s)
Oscar Black ; et al
Date Published
2017
Length
7 pages
Annotation

Since the movement to self-manufacture firearms with 3D-printing will probably lead to their increasing use in crimes, the current project test-fired gun barrels made with acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), polyethylene terephthalate (PETG), chlorinated polyethylene (CPE), and nylon to identify their potential evidence production and implications for the investigation of crimes involving the firing  of such guns.

Abstract

The resulting cartridge cases, bullets, and gunshot residue (GSR) were examined by direct analysis in real time – mass spectrometry (DART-MS). High-resolution mass spectra detected polymer from the gun barrel on bullets and cartridge casings for a 0.38 special caliber gun and, to a lesser extent, for a 0.22 caliber 3D-printed gun. Particles of plastic were identified in some GSR samples collected from clothing used as a backstop for test-fires. DART-MS also readily detected signature organic GSR compounds, including methyl centralite, ethyl centralite, diphenylamine, and nitrocellulose, on recovered bullets, cartridge cases, and in extracts of SEM stubs used to collect GSR from the clothing. Overall, this study demonstrates that analysis of firearm trace evidence using DART-MS deserves more attention, and that the technique may be particularly useful for investigating crimes involving 3D-printed guns. (publisher abstract modified)