U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

The Influence of Temperature on the Polymerization of Ethyl Cyanoacrylate from the Vapor Phase

NCJ Number
Reactive and Functional Polymers Volume: 71 Issue: 8 Dated: AUG 2011 Pages: 809-819
Dana Algaier; Durairaj Baskaran; Mark Dadmun
Date Published
August 2011
11 pages

The authors analyze the effects of temperature on the interpretation of latent fingerprint identification; they discuss insights from their research into the role that temperature plays in the polymerization process, and how it can be used to guide forensic scientists to improve the superglue fuming technique.


The polymerization of ethyl cyanoacrylate fumes from surface bound initiators is an important step in many novel and mature technologies. Understanding the effect of temperature on the rate of poly(ethyl cyanoacrylate) (PECA) growth and its molecular weight during its polymerization from the vapor phase from surface bound initiators provides insight into the important mechanistic aspects that impact the polymerizations’ success. In these studies, it is shown that the amount of PECA formed during the polymerization of ECA from a latent fingerprint increases with decreasing temperature, while the polymer molecular weight varies little. This is interpreted to be the result of the loosening of the ion pair that initiates the polymer chain growth and resides on the end of the growing polymer chain with decreasing temperature. Comparison of temperature effects and counter-ion studies show that in both cases loosening the ion pair results in the formation of more polymer with similar molecular weight, verifying this interpretation. These results further suggest that lowering the temperature may be an effective method to optimize anionic vapor phase polymerizations, including the improvement of the quality of aged latent prints and preliminary results are presented that substantiate this prediction. (Publisher Abstract Provided)