Recent developments in forensic science have precipitated a proliferation of methods for quantifying the probative value of evidence by constructing a Bayes Factor that allows a decision-maker to select between the prosecution and defense models. Unfortunately, the analytical form of a Bayes Factor is often computationally intractable. A typical approach in statistics uses Monte Carlo integration to numerically approximate the marginal likelihoods composing the Bayes Factor. The current article describes the derivation of an asymptotic Monte Carlo standard error (MCSE) for the Bayes Factor, and its applicability to quantifying the value of evidence is explored, using a simulation-based example involving a benchmark data set. The simulation also explores the effect of prior choice on the Bayes Factor approximations and corresponding MCSEs. (Publisher abstract modified)
Downloads
Similar Publications
- Development of a spectral X-ray fluorescence database to strengthen the scientific foundations for the forensic analysis and interpretation of modern soda-lime glass
- Development of baseline survey of random presence of glass and paint for the interpretation of evidence in the US courts
- Evidence Management Steering Committee Report: Opportunities to Strengthen Evidence Management Processes