Particle size is a critical factor, because e-liquids and e-cigarette settings that produce ultra-fine particles (less than 0.3 mm) can be aerosolized and reach the pulmonary alveolar regions; this gives them potential for abuse and risk of overdose for drugs other than nicotine (DOTNs) used in e-cigarettes. E-liquids that contained 12 mg/mL nicotine prepared in glycol compositions of 100-percent propylene glycol (PG), 100-percent vegetable glycerin (VG), or 50:50 PG:VG were aerosolized at three voltages and three coil resistances. Methamphetmine and Methadone e-liquids were prepared at 60 mg/mL in 50:50 PG:VG, and all e-liquids were prepared at 60 mg/mL in PG:VG, and all e-liquids were aerosolized onto a 10 stage Micro-Orifice Uniform Deposit Impact. The study determined that the particle size stage for 0.172-0.1 mm was greater for methamphetamine and methadone than nicotine. The small particle sizes combined with the user's modulation of glycol composition and inhalation techniques (inhale and hold) can improve the bioavailability of methadone and methamphetamine in e-cigarette systems, thereby increasing the potential for overdose. 3 figures and 40 references
Downloads
Similar Publications
- Discrimination Between Human and Animal Blood Using Raman Spectroscopy and a Self-Reference Algorithm for Forensic Purposes: Method Expansion and Validation
- Atmospheric Chemistry of Chloroprene Initiated by OH Radicals: Combined Ab Initio/DFT Calculations and Kinetics Analysis
- Determining Fracture Timing from Microscopic Characteristics of Cortical Bone