This study reviewed new approaches for the streamlined development of high-performance aptamer-based sensors for small-molecule detection.
Aptamers are nucleic acid-based affinity reagents that have gained widespread attention as biorecognition elements for the detection of targets such as ions, small molecules, and proteins. Over the past three decades, the field of aptamer-based sensing has grown considerably; however, the advancement of aptamer-based small-molecule detection has fallen short of the high demand for such sensors in applications such as diagnostics, environmental monitoring, and forensics. This is due to two challenges: the complexity of developing generalized sensing platforms and the poor sensitivities of assays targeting small molecules. The current study provides historical context, explores the current state-of-the art, and offers future directions—with emphasis on new aptamer engineering methods, the use of cooperative binding, and label-free approaches using fully-folded, high-affinity aptamers for small-molecule sensing. (publisher abstract modified)
Downloads
Similar Publications
- Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence
- Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma
- Firearm Shootings and the Police Response: Examining the Impact of Gunshot Detection Technology