In addition, a method is introduced that automatically chooses the enhancement algorithm's parameters based on the proposed measure, such that it yields the best enhancement result. Fingerprint is one of the most widely used biometric in law enforcement; however, low-quality fingerprint images can drastically degrade the performance of automated fingerprint identification systems (AFIS). AFIS can be substantially advanced by establishing a metric to evaluate the image quality accurately and then using this metric to enable an automated enhancement process. The LQM measure presented in the current project uses fingerprint image characteristics that include sharpness, contrast, orientation certainty level, symmetry features, and imprints of friction ridge structure (minutiae) information. The FVC2004 Set B database containing fingerprint images from four different sensors and a total of 240 images (80 from each sensor) is used to evaluate the performance of the presented algorithms and methods. The computer simulations demonstrate that the LQM measure is useful in predicting the quality of the fingerprint images captured from various devices. Furthermore, the experiments show that LQME can recover retrievable-corrupt fingerprint regions. (publisher abstract modified)
Downloads
Similar Publications
- Dyed Hair and Swimming Pools: The Influence of Chlorinated and Nonchlorinated Agitated Water on Surface-Enhanced Raman Spectroscopic Analysis of Artificial Dyes on Hair
- In Vitro Structure-activity Relationships and Forensic Case Series of Emerging 2-benzylbenzimidazole 'Nitazene' Opioids
- Addressing the Challenges of Detecting Drug-Facilitated Sexual Assault