This study was conducted because synthetic cannabinoids have become a ubiquitous challenge in forensic toxicology and seized drug analysis. Thermal degradation products have yet to be identified and evaluated for toxicity compared to parent and metabolic compounds. Since the major route of ingestion is inhalation, an investigation into these pyrolytic products may produce additional information on the toxicity of synthetic cannabinoids. In the current study, the pyrolysis of herbal material alone was first conducted, and then the plant substrate was spiked with the drug compounds to 2-5 percent w/w concentrations. Samples were collected, filtered, evaporated under nitrogen gas, reconstituted in methanol, and analyzed via gas chromatograph-mass spectrometer. Pyrolysis of the plant material alone produced 10 consistently observed compounds between the six plant species. The pyrolysis of the synthetic cannabinoids produced a total of 52 pyrolytic compounds; 32 were unique to a particular parent compound, and the remaining 20 were common products between multiple cannabinoids. The thermal degradation followed three major pathways that are outlined to assist in producing a predictive model for new synthetic cannabinoids that may arise in case samples. The observed pyrolytic products are also viable options for analysis in postmortem samples and the evaluation of toxicity. (Publisher abstract modified)
Downloads
Similar Publications
- Navigating an Unclear Terrain: Challenges in Recognizing, Naming, and Accessing Services for "Forced Marriage"
- Forensic Biology Protocols for Molecular Serology Manual
- Preliminary Sex-specific Relationships between Peak Force and Cortical Bone Morphometrics in Human Tibiae Subjected to Lateral Loading