U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

Stabilizing Information Content in DNA Evidence to Improve Lab-to-Lab Inference

NCJ Number
310504
Author(s)
Laura Malek
Date Published
2019
Length
74 pages
Annotation

This study examines the process of stabilizing information content in DNA Evidence to improve lab-to-lab inference.

Abstract

This project demonstrates that stabilizing the DNA signal acquired through PCR-based techniques is possible through implementation of a simulation-based approach using the laboratories’ own data to parameterize an in-silico DNA laboratory. Notably, if all laboratories choose parameters that render consistent detection of a single-copy of DNA, the evidentiary signal between laboratories would contain the same information contents, substantially improving evidential inference at a national scale. Additionally, using optimal analytical pipelines clearly demonstrates that direct PCR methods are not necessarily beneficial when attempting low-copy number interpretation; rather, multiple replicate amplifications of DNA rendered from a swab-silica pre-PCR pipeline is preferred. Assessing the probability that a person contributed to an evidentiary item becomes a complicated combinatorial challenge, made more difficult in the presence of extraneous signal originating from random allele drop-in events or stutter artifacts. Not only does forensic DNA signal consist of extraneous signal, but it may exhibit significant levels of allele non-detection, often referred to as allele drop-out. Given these two sources of drop-out and the desire to stabilize inference results between laboratories, it is of interest to develop laboratory protocols aimed at reducing 1) drop-out due to sampling effects; and 2) drop-out due to detection effects. Researchers determined, through a DNA simulator named ValiDNA, that the optimal analytical conditions consisted of 29 PCR cycles and a 25 second injection. Once optimal analytical conditions were determined, a variety of collection/extraction pipelines were evaluated. In particular, cutting versus swabbing techniques were tested, as were silica and direct-to-PCR extraction methods. Notably, coupling a cotton swab collection with a silica-based extraction forces DNA volume partitions be processed through to PCR, while the FLOQSwab® and PicoPure® method is a ‘direct-to-PCR’ method that does not fractionate the extract. Experimentation demonstrated that there was not a significant difference between the four pre-PCR processes tested.