The classification of blood samples was achieved according to each sample's species of origin, which enhanced previously observed discrimination ability. The developed approach does not require the knowledge of a specific (bio)chemical marker for each individual class but rather relies on a spectroscopic statistical differentiation of various components. This approach results in remarkable classification ability even with intrinsically heterogeneous classes and samples. In addition, the obtained spectroscopic characteristics could potentially provide information about specific changes in the (bio)chemical composition of samples, which are responsible for the differentiation. The species identification of a blood stain is an important and immediate challenge for forensic science, veterinary purposes, and wildlife preservation. The current methods used to identify the species of origin of a blood stain are limited in scope and destructive to the sample. The authors previously demonstrated that Raman spectroscopy can reliably differentiate blood traces of human, cat, and dog (Virkler et al. Anal. Chem. 2009, 81, 7773-7777) and, most recently, built a binary model for differentiating human vs animal blood for 11 species integrated with human existence (McLaughlin et al. Forensic Sci. Int. 2014, 238, 91-95). (Publisher abstract modified)
Downloads
Similar Publications
- Cross-Sectional Analysis of Sleep-Promoting and Wake-Promoting Drug Use on Health, Fatigue-Related Error, and Near-Crashes in Police Officers
- “They are not victimless crimes…that's frustrating to hear”: Qualitative insights from prosecutors working on cases related to technology facilitated child sexual abuse material
- Reassessing the Breadth of the Protective Benefit of Immigrant Neighborhoods: A Multilevel Analysis of Violence Risk by Race, Ethnicity, and Labor Market Stratification