NCJ Number
              310589
          Date Published
  2021
Abstract
              This paper presents a supervised mixing augmentation method termed SuperMix, which exploits the salient regions within input images to construct mixed training samples. SuperMix is designed to obtain mixed images rich in visual features and complying with realistic image priors. To enhance the efficiency of the algorithm, we develop a variant of the Newton iterative method, 65× faster than gradient descent on this problem. We validate the effectiveness of SuperMix through extensive evaluations and ablation studies on two tasks of object classification and knowledge distillation. On the classification task, SuperMix provides comparable performance to the advanced augmentation methods, such as AutoAugment and RandAugment. In particular, combining SuperMix with RandAugment achieves 78.2% top-1 accuracy on ImageNet with ResNet50. On the distillation task, solely classifying images mixed using the teacher’s knowledge achieves comparable performance to the state-of-the-art distillation methods. Furthermore, on average, incorporating mixed images into the distillation objective improves the performance by 3.4% and 3.1% on CIFAR-100 and ImageNet, respectively. The code is available at https://github.com/alldbi/SuperMix (Publisher abstract provided.)
Date Published: January 1, 2021
Downloads
Similar Publications
- Technical Note: A novel method for simultaneous recovery of DNA, RNA, and proteins from trace biological samples for forensic application
 - Detecting Various Burial Scenarios In A Controlled Setting Using Ground-penetrating Radar And Conductivity
 - Extraction of shoe-print patterns from impression evidence using Conditional Random Fields