Understanding the biochemical aging mechanisms of bloodstains is essential for developing reliable forensic methods to estimate the time since deposition (TSD). Although fluorescence spectroscopy is effective for tracking endogenous fluorophores such as tryptophan, nicotinamide adenine dinucleotide (NADH), and flavins, its utility is limited by spectral overlap and sample variability. In this study, we employed two-dimensional correlation spectroscopy (2D-COS) and 2D gradient mapping method to investigate the time-dependent fluorescence changes in bloodstains, gaining molecular-level insights into the aging process. 2D-COS uncovered hidden spectral components and revealed sequential molecular changes, especially in NADH- and flavin-associated bands. The 2D gradient maps further visualized these spectral trends quantitatively over 24 hours of aging. This study focuses on uncovering the biochemical mechanisms underlying bloodstain aging, probed by fluorescence spectroscopy. These findings deepen our fundamental understanding of ex vivo blood degradation and establish a foundation for more accurate and robust forensic applications.
(Publisher abstract provided.)
Downloads
Similar Publications
- Towards automation of human stage of decay identification: An artificial intelligence approach☆
- Unveiling the Nexus: How Bias Victimization Experiences among Latinx Communities Impact Political Engagement
- Gender differences in gang-involved youth and juvenile justice outcomes: Findings from the Rio Grande Valley